Химическое соединение ковалентной неполярной связи. Свойства и строение вещества: ковалентная неполярная связь, отличие от полярной

Впервые о таком понятии как ковалентная связь ученые-химики заговорили после открытия Гилберта Ньютона Льюиса, который описал как обобществление двух электронов. Более поздние исследования позволили описать и сам принцип ковалентной связи. Слово ковалентный можно рассматривать в рамках химии как способность атома образовывать связи с другими атомами.

Поясним на примере:

Имеется два атома с незначительными отличиями в электроотрицательности (С и CL, С и Н). Как правило, это которых максимально близко к строению электронной оболочки благородных газов.

При выполнении данных условий возникает притяжение ядер этих атомов к электронной паре, общей для них. При этом электронные облака не просто накладываются друг на друга, как при Ковалентная связь обеспечивает надежное соединение двух атомов за счет того, что перераспределяется электронная плотность и изменяется энергия системы, что вызвано "втягиванием" в межъядерное пространство одного атома электронного облака другого. Чем более обширно взаимное перекрытие электронных облаков, тем связь считается более прочной.

Отсюда, ковалентная связь - это образование, возникшее путем взаимного обобществления двух электронов, принадлежащих двум атомам.

Как правило, вещества с молекулярной кристаллической решеткой образуются посредством именно ковалентной связи. Характерными для являются плавление и кипение при низких температурах, плохая растворимость в воде и низкая электропроводность. Отсюда можно сделать вывод: в основе строения таких элементов, как германий, кремний, хлор, водород - ковалентная связь.

Свойства, характерные для данного вида соединения:

  1. Насыщаемость. Под этим свойством обычно понимается максимальное количество связей, которое они могут установить конкретные атомы. Определяется это количество общим числом тех орбиталей в атоме, которые могут участвовать в образовании химических связей. Валентность атома, с другой стороны, может быть определена числом уже использованных с этой целью орбиталей.
  2. Направленность . Все атомы стремятся образовывать максимально прочные связи. Наибольшая прочность достигается в случае совпадения пространственной направленности электронных облаков двух атомов, поскольку они перекрывают друг друга. Кроме того, именно такое свойство ковалентной связи как направленность влияет на пространственное расположение молекул то есть отвечает за их "геометрическую форму".
  3. Поляризуемость. В основе этого положения лежит представление о том, что ковалентная связь существует двух видов:
  • полярная или несимметричная. Связь данного вида могут образовывать только атомы разны видов, т.е. те, чья электроотрицательность значительно различается, либо в случаях, когда общая электронная пара несимметрично разделена.
  • возникает между атомами, электроотрицательность которых практически равна, а распределение электронной плотности равномерно.

Кроме того, существуют определенные количественные :

  • Энергия связи . Данный параметр характеризует полярную связь с точки зрения ее прочности. Под энергией понимается то количество тепла, которое было необходимо для разрушения связи двух атомов, а также то количество тепла, что было выделено при их соединении.
  • Под длиной связ и в молекулярной химии понимается длина прямой между ядрами двух атомов. Этот параметр также характеризует прочность связи.
  • Дипольный момент - величина, которая характеризует полярность валентной связи.

Химическим элементарным частицам свойственно соединяться друг с другом посредством формирования специальных взаимосвязей. Они бывают полярными и неполярными. Каждая из них имеет определенный механизм формирования и условия возникновения.

Вконтакте

Что это

Ковалентная связь — это образование, возникающее у элементов с неметаллическими свойствами . Наличие приставки «ко» свидетельствует о совместном участии атомных электронов разных элементов.

Понятие «валенты» означает наличие определенной силы. Возникновение такой взаимосвязи происходит посредством обобществления атомных электронов, не имеющих «пары».

Указанные химические связи возникают за счет появления «копилки» электронов, являющейся общей для обеих взаимодействующих частиц. Появление пар электронов осуществляется вследствие накладывания друг на друга электронных орбиталей. Указанные виды взаимодействия возникают между электронными облаками обоих элементов .

Важно! Ковалентная взаимосвязь появляется в случае объединения пары орбиталей.

Веществами с описанной структурой являются:

  • многочисленные газы;
  • спирты;
  • углеводы;
  • белки;
  • органические кислоты.

Ковалентная химическая связь образуется за счет формирования общественных пар электронов у простых веществ либо сложных соединений. Она бывает полярная и неполярная.

Как определить природу химической связи? Для этого необходимо посмотреть на атомную составляющую частиц , присутствующих в формуле.

Химические связи описанного вида формируются только между элементами, где преобладают неметаллические свойства.

Если в соединении присутствуют атомы одинаковых либо разных неметаллов, значит возникающие между ними взаимосвязи – «ковалентные».

Когда в соединении одновременно присутствуют металл и неметалл говорят об образовании взаимосвязи.

Структура с «полюсами»

Ковалентная полярная связь соединяет друг с другом атомы разных по природе неметаллов. Это могут быть атомы:

  • фосфора и ;
  • хлора и ;
  • аммиака.

Есть и другое определение для указанных веществ. Оно говорит о том, что данная «цепочка» формируется между неметаллами с разными показателями электроотрицательности. В обоих случаях «подчеркивается» разновидность химических элементов-атомов, где возникла эта взаимосвязь.

Формула вещества с ковалентной полярной связью – это:

  • NO и многие другие.

Представленные соединения в нормальных условиях могут иметь жидкие либо газообразные агрегатные состояния. Формула Льюиса помогает точнее понять механизм связывания атомных ядер.

Как появляется

Механизм образования ковалентной связи для атомных частиц с разными значениями электроотрицательности сводится к формированию общей плотности электронной природы.

Обычно она смещается к элементу, имеющему наибольший показатель электроотрицательности. Его можно определить по специальной таблице.

Из-за смещения общей пары «электрончиков» в сторону элемента с большим значением электроотрицательности, на нем частично формируется отрицательный заряд.

Соответственно другой элемент получит частичный положительный заряд. Вследствие этого образуется соединение с двумя разнозаряженными полюсами.

Нередко при образовании полярной взаимосвязи используется акцепторный механизм или донорно-акцепторный механизм. Примером вещества, образованного по данному механизму, служит молекула аммиака. В нем азот наделен свободной орбиталью, а водород – свободным электроном. Образующая общая электронная пара занимает данную орбиталь азота, в результате чего один элемент становится донором, а другой акцептором.

Описанный механизм образования ковалентной связи , как вид взаимодействия, характерен не для всех соединений с полярным связыванием. Примерами могут служить вещества органического, а также неорганического происхождения.

О неполярной структуре

Ковалентная неполярная связь связывает между собой элементы с неметаллическими свойствами, имеющими одинаковые значения электроотрицательности. Другими словами, вещества с ковалентной неполярной связью — это соединения, состоящие из разного количества идентичных неметаллов.

Формула вещества с ковалентной неполярной взаимосвязью:

Примеры соединений, относящиеся к указанной категории являются веществами простого строения . В формировании этого типа взаимодействия, как и других неметаллических взаимосвязей, задействуются «крайние» электроны.

В некоторой литературе их именуют валентными. Под подразумевают количество электронов, необходимых для завершения внешней оболочки. Атом может отдавать или принимать отрицательно заряженные частицы.

Описанная взаимосвязь относится к категории двухэлектронных либо двухцентровых цепочек. При этом пара электронов занимает общее положение между двумя орбиталями элементов. В структурных формулах электронную пару записывают в виде горизонтальной черты или «-». Каждая такая черточка показывает количество общих электронных пар в молекуле.

Для разрыва веществ с указанным видом взаимосвязи требуется затратить максимальное количество энергии, поэтому эти вещества являются одними из прочных по шкале прочности.

Внимание! В данную категорию относят алмаз – одно из самых прочных соединений в природе.

Как появляется

По донорно-акцепторному механизму неполярные взаимосвязи практически не соединяются. Ковалентная неполярная связь — это структура, формирующаяся посредством возникновения общих пар электронов. Данные пары в одинаковой степени принадлежат обоих атомам. Кратное связывание по формуле Льюиса точнее дает представление о механизме соединения атомов в молекуле.

Сходством ковалентной полярной и неполярной связи является появление общей электронной плотности. Только во втором случае образующиеся электронные «копилки» в одинаковой мере принадлежат обоим атомам, занимая центральное положение. В результате не образуются частичные положительные и отрицательные заряды, а значит образующиеся «цепи» являются неполярными.

Важно! Неполярная взаимосвязь приводит к образованию общей электронной пары, за счет чего последний электронный уровень атома становится завершенным.

Свойства веществ с описанными структурами существенно различаются от свойств веществ с металлической либо ионной взаимосвязью.

Что такое ковалентная полярная связь

Какие бывают виды химической связи

Данная статья повествует о том, что такое ковалентная неполярная связь. Описываются ее свойства, типы атомов, которые ее образуют. Показано место ковалентной связи среди других видов соединений атомов.

Физика или химия?

Есть в обществе такой феномен: одна часть однородной группы считает другую менее понятливой, более неуклюжей. Например, англичане смеются над ирландцами, музыканты, играющие на струнных, - над виолончелистами, жители России - над представителями чукотского этноса. К сожалению, наука не исключение: физики считают химиков второсортными учеными. Однако, делают они это зря: отделить, где физика, а где химия порой весьма непросто. Таким примером могут служить способы соединения атомов в веществе (например, ковалентная неполярная связь): строение атома - однозначно физика, получение из железа и серы сульфида железа со свойствами, отличными и от Fe, и от S - точно химия, а вот как из двух разных атомов получается однородное соединение - ни то ни другое. Это нечто посередине, но традиционно науку о связях изучают как раздел химии.

Электронные уровни

Количество и расположение электронов в атоме определяют четыре квантовых числа: главное, орбитальное, магнитное и спиновое. Так, согласно сочетанию всех этих чисел, на первой орбитали существуют только два s-электрона, на второй - два s-электрона и шесть p-электронов и так далее. С ростом заряда ядра увеличивается и количество электронов, заполняя все новые и новые уровни. Химические свойства вещества определяются тем, сколько и каких электронов находится в оболочке их атомов. Ковалентная связь, полярная и неполярная, образуется, если на внешних орбиталях двух атомов находятся по одному свободному электрону.

Образование ковалентной связи

Для начала надо отметить, что говорить «орбита» и «положение» в отношении электронов в электронной оболочке атомов некорректно. Согласно принципу Гейзенберга, определить точное местонахождение элементарной частицы невозможно. В данном случае корректнее было бы говорить об электронном облаке, как бы «размазанном» вокруг ядра на конкретном расстоянии. Итак, если у двух атомов (иногда одинаковых, иногда разных химических элементов) есть по одному свободному электрону, они могут объединять их на общую орбиталь. Таким образом, оба электрона принадлежат двум атомам сразу. Этим путем образуется, например, ковалентная неполярная связь.

Свойства ковалентных связей

Свойств у ковалентной связи четыре: направленность, насыщаемость, полярность, поляризуемость. В зависимости от их качества будут меняться химические свойства получающегося вещества: насыщаемость показывает, сколько связей способен создать этот атом, направленность показывает угол между связями, поляризуемость задается смещением плотности в сторону одного из участников связи. Полярность же связана с таким понятием, как электроотрицательность, и указывает на то, чем ковалентная неполярная связь отличается от полярной. В общих чертах электроотрицательность атома - это способность притягивать (или отталкивать) электроны соседей в устойчивых молекулах. Например, самыми электроотрицательными химическими элементами можно назвать кислород, азот, фтор, хлор. Если электроотрицательность двух разных атомов совпадает, появляется ковалентная неполярная связь. Чаще всего это происходит, если в молекулу соединяются два атома одного химического вещества, например H 2 , N 2 , Cl 2 . Но это не обязательно так: в молекулах PH 3 ковалентная связь тоже неполярная.

Вода, кристалл, плазма

В природе существует несколько видов связей: водородная, металлическая, ковалентная (полярная, неполярная), ионная. Связь задается строением незаполненной электронной оболочки и определяет как структуру, так и свойства вещества. Как следует из названия, металлическая связь присуща только кристаллам определенных химических веществ. Именно тип связи атомов металлов между собой задает их способность проводить электрический ток. Фактически современная цивилизация построена на этом свойстве. Вода, самое важное вещество для человека, является результатом соединения ковалентной связью одного атома кислорода и двух водорода. Угол между двумя этими соединениями и задает уникальные свойства воды. Многие вещества, помимо воды, обладают полезными свойствами только потому, что их атомы соединяет ковалентная связь (полярная и неполярная). Ионная связь чаще всего существует в кристаллах. Наиболее показательными являются полезные свойства лазеров. Сейчас они бывают разными: с рабочим телом в виде газа, жидкости, даже органического красителя. Но оптимальным соотношением мощности, размера и стоимости обладает все же твердотельный лазер. Однако ковалентная неполярная химическая связь, как и другие виды взаимодействия атомов в молекулах, присуща веществам в трех агрегатных состояниях: твердом, жидком, газообразном. Для четвертого агрегатного состояния вещества, плазмы, говорить о связи бессмысленно. Фактически это сильно ионизированный разогретый газ. Однако в состоянии плазмы могут находиться молекулы твердых при нормальных условиях веществ - металлов, галогенов и т.д. Примечательно, что это агрегатное состояние вещества занимает наибольший объем Вселенной: звезды, туманности, даже межзвездное пространство представляют собой смешение разных видов плазмы. Мельчайшие частицы, которые способны пробить солнечные батареи спутников связи и вывести из строя систему GPS, являются пылевой низкотемпературной плазмой. Таким образом, привычный для людей мир, в котором важно знать тип химической связи веществ, представляет собой очень маленькую часть окружающей нас Вселенной.

Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

E(XY) < E(X) + E(Y)

По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

Ковалентная связь

Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

Примеры веществ с ковалентной полярной связью:

СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

Также существует и донорно-акцепторный механизм.

При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

HI < HBr < HCl < HF

Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

Ионная связь

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH)

Металлическая связь

Данный тип связи образуется в металлах.

У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

М 0 — ne − = M n + ,

где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

Водородная связь

Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.

Единой теории химической связи не существует, условно химическую связь делят на ковалентную (универсальный вид связи), ионную(частный случай ковалентной связи), металлическую и водородную.

Ковалентная связь

Образование ковалентной связи возможно по трем механизмам: обменному, донорно-акцепторному и дативному (Льюиса).

Согласно обменному механизму образование ковалентной связи происходит за счет обобществления общих электронных пар. При этом каждый атом стремится приобрести оболочку инертного газа, т.е. получить завершенный внешний энергетический уровень. Образование химической связи по обменному типу изображают с использованием формул Льюиса, в которых каждый валентный электрон атома изображают точками (рис. 1).

Рис. 1 Образование ковалентной связи в молекуле HCl по обменному механизму

С развитием теории строения атома и квантовой механики образование ковалентной связи представляют, как перекрывание электронных орбиталей (рис. 2).

Рис. 2. Образование ковалентной связи за счет перекрывания электронных облаков

Чем больше перекрывание атомных орбиталей, тем прочнее связь, меньше длина связи и больше ее энергия. Ковалентная связь может образовываться за счет перекрывания разных орбиталей. В результате перекрывания s-s, s-p орбиталей, а также d-d, p-p, d-p орбиталей боковыми лопастями происходит образование – связи. Перпендикулярно линии, связывающей ядра 2-х атомов образуется – связь. Одна – и одна – связь способны образовывать кратную (двойную) ковалентную связь, характерную для органических веществ класса алкенов, алкадиенов и др. Одна – и две – связи образуют кратную (тройную) ковалентную связь, характерную для органических веществ класса алкинов (ацетиленов).

Образование ковалентной связи по донорно-акцепторному механизму рассмотрим на примере катиона аммония:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Атом азота имеет свободную неподеленную пару электронов (электроны не участвующие в образовании химических связей внутри молекулы), а катион водорода свободную орбиталь, поэтому они являются донором и акцептором электронов, соответственно.

Дативный механизм образования ковалентной связи рассмотрим на примере молекулы хлора.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Атом хлора имеет и свободную неподеленную пару электронов и вакантные орбитали, следовательно, может проявлять свойства и донора и акцептора. Поэтому при образовании молекулы хлора, один атом хлора выступает в роли донора, а другой – акцептора.

Главными характеристиками ковалентной связи являются: насыщаемость (насыщенные связи образуются тогда, когда атом присоединяет к себе столько электронов, сколько ему позволяют его валентные возможности; ненасыщенные связи образуются, когда число присоединенных электронов меньше валентных возможностей атома); направленность (эта величина связана с геометрий молекулы и понятием «валентного угла» — угла между связями).

Ионная связь

Соединений с чистой ионной связью не бывает, хотя под этим понимают такое химически связанное состояние атомов, в котором устойчивое электронное окружение атома создается при полном переходе общей электронной плотности к атому более электроотрицательного элемента. Ионная связь возможна только между атомами электроотрицательных и электроположительных элементов, находящихся в состоянии разноименно заряженных ионов – катионов и анионов.

ОПРЕДЕЛЕНИЕ

Ионом называют электрически заряженные частицы, образуемые путем отрыва или присоединения электрона к атому.

При передаче электрона атомы металлов и неметаллов стремятся сформировать вокруг своего ядра устойчивую конфигурацию электронной оболочки. Атом неметалла создает вокруг своего ядра оболочку последующего инертного газа, а атом металла – предыдущего инертного газа (рис. 3).

Рис. 3. Образование ионной связи на примере молекулы хлорида натрия

Молекулы, в которых в чистом виде существует ионная связь встречаются в парообразном состоянии вещества. Ионная связь очень прочная, в связи с этим вещества с этой связью имеют высокую температуру плавления. В отличии от ковалентной для ионной связи не характерны направленность и насыщаемость, поскольку электрическое поле, создаваемое ионами, действует одинаково на все ионы за счет сферической симметрии.

Металлическая связью

Металлическая связь реализуется только в металлах – это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании связи участвуют только валентные электроны атомов металла, принадлежащие всему его объему. В металлах от атомов постоянно отрываются электроны, которые перемещаются по всей массе металла. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые стремятся принять к себе движущиеся электроны. Этот непрерывный процесс формирует внутри металла так называемый «электронный газ», который прочно связывает между собой все атомы металла (рис. 4).

Металлическая связь прочная, поэтому для металлов характерна высокая температура плавления, а наличие «электронного газа» придают металлам ковкость и пластичность.

Водородная связь

Водородная связь – это специфическое межмолекулярное взаимодействие, т.к. ее возникновение и прочность зависят от химической природы вещества. Она образуется между молекулами, в которых атом водорода связан с атомом, обладающим высокой электроотрицательностью (O, N, S). Возникновение водородной связи зависит от двух причин, во-первых, атом водорода, связанный с электроотрицательным атомом не имеет электронов и может легко внедряться в электронные облака других атомов, а, во-вторых, обладая валентной s-орбиталью, атом водорода способен принимать неподеленную пару электронов электроотрицательного атома и образовывать с ним связь по донорно акцепторному механизму.