Теоремы не имеющие доказательств. Фундаментальные исследования

n > 2 {\displaystyle n>2} уравнение:

не имеет решений в целых ненулевых числах .

Встречается более узкий вариант формулировки, утверждающий, что это уравнение не имеет натуральных решений. Однако очевидно, что если существует решение для целых чисел, то существует и решение в натуральных числах. В самом деле, пусть a , b , c {\displaystyle a,b,c} - целые числа, дающие решение уравнения Ферма. Если n {\displaystyle n} чётно, то | a | , | b | , | c | {\displaystyle |a|,|b|,|c|} тоже будут решением, а если нечётно, то перенесём все степени отрицательных значений в другую часть уравнения, изменив знак. Например, если бы существовало решение уравнения a 3 + b 3 = c 3 {\displaystyle a^{3}+b^{3}=c^{3}} и при этом a {\displaystyle a} отрицательно, а прочие положительны, то b 3 = c 3 + | a | 3 {\displaystyle b^{3}=c^{3}+|a|^{3}} , и получаем натуральные решения c , | a | , b . {\displaystyle c,|a|,b.} Поэтому обе формулировки эквивалентны.

Обобщениями утверждения теоремы Ферма являются опровергнутая гипотеза Эйлера и открытая гипотеза Ландера - Паркина - Селфриджа .

История

Для случая эту теорему в X веке пытался доказать ал-Ходжанди , но его доказательство не сохранилось.

В общем виде теорема была сформулирована Пьером Ферма в 1637 году на полях «Арифметики » Диофанта . Дело в том, что Ферма делал свои пометки на полях читаемых математических трактатов и там же формулировал пришедшие на ум задачи и теоремы. Теорему, о которой ведётся речь, он записал с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было поместить на полях книги:

Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него.

Оригинальный текст (лат.)

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos & generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Ферма приводит только доказательство, как решение задачи, сводимой к четвёртой степени теоремы n = 4 {\displaystyle n=4} , в 45-м комментарии к «Арифметике» Диофанта и в письме к Каркави (август 1659 года) . Кроме этого, Ферма включил случай n = 3 {\displaystyle n=3} в список задач, решаемых методом бесконечного спуска .

Над полным доказательством Великой теоремы работало немало выдающихся математиков и множество дилетантов-любителей; считается, что теорема стоит на первом месте по количеству некорректных «доказательств». Тем не менее эти усилия привели к получению многих важных результатов современной теории чисел . Давид Гильберт в своём докладе «Математические проблемы» на II Международном конгрессе математиков (1900) отметил, что поиск доказательства для этой, казалось бы, малозначимой теоремы привёл к глубоким результатам в теории чисел . В 1908 году немецкий любитель математики Вольфскель завещал 100 тыс. немецких марок тому, кто докажет теорему Ферма. Однако после Первой мировой войны премия обесценилась .

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла , доказанной Фальтингсом в 1983 году , следует, что уравнение a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} при n > 3 {\displaystyle n>3} может иметь лишь конечное число взаимно простых решений.

Немецкий математик Герхард Фрай предположил, что Великая теорема Ферма является следствием гипотезы Таниямы - Симуры . Это предположение было доказано Кеном Рибетом .

Последний важный шаг в доказательстве теоремы был сделан Уайлсом в сентябре 1994 года . Его 130-страничное доказательство было опубликовано в журнале «Annals of Mathematics » .

Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после семи лет работы), но в нём вскоре был обнаружен серьёзный [какой? ] пробел, который с помощью Ричарда Лоуренса Тейлора удалось достаточно быстро устранить . В 1995 году был опубликован завершающий вариант . В 2016 году за доказательство Великой теоремы Ферма Эндрю Уайлс получил Абелевскую премию .

Колин Мак-Ларти отметил, что, возможно, доказательство Уайлса удастся упростить, чтобы не предполагать существования так называемых «больших кардиналов » .

Теорема Ферма также тривиально следует из abc-гипотезы , о доказательстве которой заявил японский математик Синъити Мотидзуки ; его доказательство отличается исключительной сложностью. В настоящее время в математическом сообществе нет ясного консенсуса в отношении его работ .

Некоторые вариации и обобщения

2682440 4 + 15365639 4 + 18796760 4 = 20615673 4 . {\displaystyle 2682440^{4}+15365639^{4}+18796760^{4}=20615673^{4}.}

Позднее были найдены и другие решения; простейшее из них:

95800 4 + 217519 4 + 414560 4 = 422481 4 . {\displaystyle 95800^{4}+217519^{4}+414560^{4}=422481^{4}.}

Ещё одним популярным обобщением теоремы Ферма является гипотеза Била , сформулированная в 1993 году американским математиком-любителем, пообещавшим за её доказательство или опровержение 1 млн долларов США.

«Ферматисты»

Простота формулировки теоремы Ферма (доступная в понимании даже школьнику), а также сложность единственного известного доказательства (или неведение о его существовании), вдохновляют многих на попытки найти другое, более простое, доказательство. Людей, пытающихся доказать теорему Ферма элементарными методами, называют «ферматистами » или «ферматиками». Ферматисты зачастую не являются профессионалами и допускают ошибки в арифметических действиях или логических выводах , хотя некоторые представляют весьма изощрённые «доказательства», в которых трудно найти ошибку.

Доказывать теорему Ферма в среде любителей математики было настолько популярно, что в 1972 году журнал «Квант» , публикуя статью о теореме Ферма, сопроводил её следующей припиской : «Редакция „Кванта“ со своей стороны считает необходимым известить читателей, что письма с проектами доказательств теоремы Ферма рассматриваться (и возвращаться) не будут».

Немецкому математику Эдмунду Ландау очень докучали «ферматисты». Чтобы не отвлекаться от основной работы, он заказал несколько сот бланков с шаблонным текстом, сообщающим, что на определённой строке на некоторой странице находится ошибка, при этом находить ошибку и заполнять пробелы в бланке он поручал своим аспирантам.

Примечательно, что отдельные ферматисты добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, которая раздувает их значение до научной сенсации . Впрочем, иногда такие публикации появляются и в уважаемых научных изданиях , как правило, с последующими опровержениями . Среди других примеров:

Теорема Ферма в культуре и искусстве

Великая теорема Ферма стала символом труднейшей научной проблемы и в этом качестве часто упоминается в беллетристике. Далее перечислены некоторые произведения, в которых теорема не просто упомянута, но является существенной частью сюжета или идеологии произведения.

  • В рассказе Артура Порджеса «Саймон Флэгг и дьявол» профессор Саймон Флегг обращается за доказательством теоремы к дьяволу. По этому рассказу снят игровой научно-популярный фильм «Математик и чёрт» (СССР, , производство Центрнаучфильм, творческое объединение «Радуга», режиссёр Райтбурт).
  • А. П. Казанцев в романе «Острее шпаги» в 1983 году предложил оригинальную версию отсутствия доказательства самого Пьера Ферма.
  • В телесериале «Звёздный Путь » капитан космического корабля Жан-Люк Пикар был озадачен разгадкой Великой теоремы Ферма во второй половине XXIV века . Таким образом, создатели фильма предполагали, что решения у Великой теоремы Ферма не будет в ближайшие 400 лет. Серия «Рояль » с этим эпизодом была снята в 1989 году , когда Эндрю Уайлс был в самом начале своих работ. В действительности решение было найдено всего спустя пять лет.
  • В посвящённой Хэллоуину 1995 года серии «Симпсонов » двумерный Гомер Симпсон случайно попадает в третье измерение. Во время его путешествия в этом странном мире в воздухе парят геометрические тела и математические формулы, включая неверное равенство 1782 12 + 1841 12 = 1922 12 {\displaystyle 1782^{12}+1841^{12}=1922^{12}} . Калькулятор с точностью не более 10 значащих цифр подтверждает это равенство: 1782 12 + 1841 12 = 2 541 210 258 614 589 176 288 669 958 142 428 526 657 ≈ 2,541 210 259 ⋅ 10 39 , 1922 12 = 2 541 210 259 314 801 410 819 278 649 643 651 567 616 ≈ 2,541 210 259 ⋅ 10 39 . {\displaystyle {\begin{array}{cl}1782^{12}+1841^{12}&=2\,541\,210\,258\,614\,589\,176\,288\,669\,958\,142\,428\,526\,657\approx 2{,}541\,210\,259\cdot 10^{39},\\1922^{12}&=2\,541\,210\,259\,314\,801\,410\,819\,278\,649\,643\,651\,567\,616\approx 2{,}541\,210\,259\cdot 10^{39}.\end{array}}}
Тем не менее, даже без вычисления точных значений легко видеть, что равенство неверно: левая часть - нечётное число , а правая часть - чётное.
  • В первом издании «Искусства программирования » Дональда Кнута теорема Ферма приведена в качестве упражнения с математическим уклоном в самом начале книги и оценена максимальным числом (50) баллов, как «исследовательская проблема, которая (насколько это было известно автору в момент написания) ещё не получила удовлетворительного решения. Если читатель найдет решение этой задачи, его настоятельно просят опубликовать его; кроме того, автор данной книги будет очень признателен, если ему сообщат решение как можно быстрее (при условии, что оно правильно)». В третьем издании книги это упражнение уже требует знаний высшей математики и оценивается лишь в 45 баллов.
  • В книге Стига Ларссона «Девушка, которая играла с огнём » главная героиня Лисбет Саландер, обладающая редкими способностями к аналитике и фотографической памятью, в качестве хобби занята доказательством Великой теоремы Ферма, на которую она наткнулась, читая фундаментальный труд «Измерения в математике», в котором приводится и доказательство Эндрю Уайлса. Лисбет не хочет изучать готовое доказательство, а главным интересом становится поиск собственного решения. Поэтому всё своё свободное время она посвящает самостоятельному поиску «замечательного доказательства» теоремы великого француза, но раз за разом заходит в тупик. В конце книги Лисбет находит доказательство, которое не только совершенно отлично от предложенного Уайлсом, но и является настолько простым, что сам Ферма мог бы его найти. Однако после ранения в голову она его забывает, и Ларссон не приводит никаких подробностей этого доказательства.
  • Мюзикл «Последнее танго Ферма», изданный , создан в 2000 году Джошуа Розенблюмом (англ. Joshua Rosenblum ) и Джоан Лесснер по мотивам реальной истории Эндрю Уайлса. Главный герой по имени Дэниел Кин завершает доказательство теоремы, а дух самого Ферма старается ему помешать .
  • За несколько дней до своей смерти Артур Кларк успел отрецензировать рукопись романа «Последняя Теорема », над которой он трудился в соавторстве с Фредериком Полом . Книга вышла уже после смерти Кларка.

Примечания

  1. Ферма теорема // Математическая энциклопедия (в 5 томах) . - М. : Советская Энциклопедия , 1985. - Т. 5.
  2. Diophantus of Alexandria. Arithmeticorum libri sex, et de numeris multangulis liber unus. Cum commentariis C.G. Bacheti V.C. & observationibus D.P. de Fermat senatoris Tolosani. Toulouse, 1670, pp. 338-339.
  3. Fermat a Carcavi. Aout 1659. Oeuvres de Fermat. Tome II. Paris: Tannery & Henry, 1904, pp. 431-436.
  4. Ю. Ю. Мачис. О предполагаемом доказательстве Эйлера // Математические заметки. - 2007. - Т. 82 , № 3 . - С. 395-400 . Английский перевод: J. J. Mačys. On Euler’s hypothetical proof (англ.) // Mathematical Notes : journal. - 2007. - Vol. 82 , no. 3-4 . - P. 352-356 . - DOI :10.1134/S0001434607090088 .
  5. Давид Гильберт. Математические проблемы :

    Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители - теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером , является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.

  6. Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал . - ISSEP, 1998. - Т. 4 , № 2 . - С. 135-138 .
  7. Wiles, Andrew. Modular elliptic curves and Fermat’s last theorem (англ.) // Annals of Mathematics : journal. - 1995. - Vol. 141 , no. 3 . - P. 443-551 . (англ.)

Лекция 6. Применение производных к исследованию функций

Если функция f (x ) имеет производную в каждой точке отрезка [а , b ], то ее поведение можно исследовать с помощью производной f" (х ).

Рассмотрим основные теоремы дифференциального исчисления, лежащие в основе приложений производной.

Теорема Ферма

Теорема (Ферма) (о равенстве нулю производной ). Если функция f (x ), дифференцируема на интервале (a , b ) и достигает наибольшего или наименьшего значения в точке с є (a , b ), тогда производная функции в этой точке равна нулю , т.е. f" (с ) = 0.

Доказательство . Пусть функция f (x ) дифференцируема на интервале (a , b ) и в точке х = с принимает наибольшее значение M при с є (a , b ) (рис. 1), т.е.

f (с ) ≥ f (x ) или f (x ) – f (c ) ≤ 0 или f (с + Δх ) – f (с ) ≤ 0.

Производная f" (x ) в точке х = с : .

Если x > c , Δх > 0 (т.е. Δх → 0 справа от точки с ), то и поэтому f" (с ) ≤ 0.

Если x < с , Δх < 0 (т.е. Δх → 0 слева от точки с ), то , откуда следует, что f" (с ) ≥ 0.

По условию f (x ) дифференцируема в точке с , следовательно, ее предел при x с не зависит от выбора направления приближения аргумента x к точке с , т.е. .

Получаем систему , из которой следует f" (с ) = 0.

В случае, когда f (с ) = т (т.е. f (x ) принимает в точке с наименьшее значение), доказательство аналогичное. Теорема доказана.

Геометрический смысл теоремы Ферма : в точке наибольшего или наименьшего значения, достигаемого внутри промежутка, касательная к графику функции параллельна оси абсцисс.

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...
Великая Теорема Ферма Сингх Саймон

«Доказана ли Великая теорема Ферма?»

Был сделан лишь первый шаг на пути к доказательству гипотезы Таниямы-Шимуры, но избранная Уайлсом стратегия была блестящим математическим прорывом, результатом, который заслуживал публикации. Но в силу обета молчания, наложенного Уайлсом самим на себя, он не мог поведать о полученном результате остальному миру и не имел ни малейшего представления о том, кто еще мог совершить столь же значительный прорыв.

Уайлс вспоминает о своем философском отношении к любому потенциальному сопернику: «Никто не захочет затратить годы на доказательство чего-то и обнаружить, что кому-то другому удалось найти доказательство несколькими неделями раньше. Но, как ни странно, поскольку я пытался решить проблему, которая по существу считалась неразрешимой, я не очень опасался соперников. Я просто не надеялся, что мне или кому-нибудь другому придет в голову идея, которая приведет к доказательству».

8 марта 1988 года Уайлс испытал шок, увидев на первых полосах газет набранные крупным шрифтом заголовки, гласившие: «Великая теорема Ферма доказана». Газеты «Washington Post» и «New York Times» сообщали, что тридцативосьмилетний Иоичи Мияока из токийского Метрополитен университета решил самую трудную математическую проблему в мире. Пока Мияока еще не опубликовал свое доказательство, но в общих чертах изложил его ход на семинаре в Институте Макса Планка по математике в Бонне. Дон Цагир, присутствовавший на докладе Мияоки, выразил оптимизм математического сообщества в следующих словах: «Представленное Мияокой доказательство необычайно интересно, и некоторые математики полагают, что оно с высокой вероятностью окажется правильным. Полной уверенности еще нет, но пока доказательство выглядит весьма обнадеживающим».

Выступая с докладом на семинаре в Бонне, Мияока рассказал о своем подходе к решению проблемы, которую он рассматривал с совершенно иной, алгебро-геометрической, точки зрения. За последние десятилетия геометры достигли глубокого и тонкого понимания математических объектов, в частности, свойств поверхностей. В 70-е годы российский математик С. Аракелов попытался установить параллели между проблемами алгебраической геометрии и проблемами теории чисел. Это было одно из направлений программы Ленглендса, и математики надеялись, что нерешенные проблемы теории чисел удастся решить, изучая соответствующие проблемы геометрии, которые также еще оставались нерешенными. Такая программа была известна под названием философии параллелизма. Те алгебраические геометры, которые пытались решать проблемы теории чисел, получили название «арифметических алгебраических геометров». В 1983 году они возвестили о своей первой значительной победе, когда Герд Фалтингс из Принстонского Института высших исследований внес существенный вклад в понимание теоремы Ферма. Напомним, что, по утверждению Ферма, уравнение

при n б?льших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n . Поверхности, связанные с уравнениями Ферма при различных значениях n , отличаются друг от друга, но обладают одним общим свойством - у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.

Рис. 23. Эти две поверхности получены с использованием компьютерной программы «Mathematica». Каждая из них представляет геометрическое место точек удовлетворяющих уравнению x n + y n = z n (для поверхности слева n =3, для поверхности справа n =5). Переменные x и y здесь считаются комплексными

Фалтингсу удалось доказать, что, поскольку такие поверхности всегда имеют несколько дыр, связанное с ними уравнение Ферма могло бы иметь лишь конечное множество решений в целых числах. Число решений могло быть любым - от нуля, как предполагал Ферма, до миллиона или миллиарда. Таким образом, Фалтингс не доказал Великую теорему Ферма, но по крайней мере сумел отвергнуть возможность существования у уравнения Ферма бесконечно многих решений.

Пятью годами позже Мияока сообщил, что ему удалось продвинуться еще на один шаг. Ему тогда было двадцать с небольшим лет. Мияока сформулировал гипотезу относительно некоторого неравенства. Стало ясно, что доказательство его геометрической гипотезы означало бы доказательство того, что число решений уравнения Ферма не просто конечно, а равно нулю. Подход Мияоки был аналогичен подходу Уайлса в том, что они оба пытались доказать Великую теорему Ферма, связывая ее с фундаментальной гипотезой в другой области математики. У Мияоки это была алгебраическая геометрия, для Уайлса путь к доказательству лежал через эллиптические кривые и модулярные формы. К великому огорчению Уайлса, он все еще бился над доказательством гипотезы Таниямы-Шимуры, когда Мияока заявил о том, что располагает полным доказательством собственной гипотезы и, следовательно, Великой теоремы Ферма.

Через две недели после своего выступления в Бонне Мияока опубликовал пять страниц вычислений, составлявших суть его доказательства, и началась тщательнейшая проверка. Специалисты по теории чисел и алгебраической геометрии во всех странах мира изучали, строка за строкой, опубликованные вычисления. Через несколько дней математики обнаружили в доказательстве одно противоречие, которое не могло не вызывать беспокойства. Одна из частей работы Мияоки приводила к утверждению из теории чисел, из которого, при переводе на язык алгебраической геометрии, получалось утверждение, противоречившее результату, полученному несколькими годами раньше. И хотя это не обязательно обесценивало все доказательство Мияоки, обнаруженное противоречие не вписывалось в философию параллелизма между теорией чисел и геометрией.

Еще через две недели Герд Фалтингс, проложивший путь Мияоке, объявил о том, что обнаружил точную причину кажущегося нарушения параллелизма - пробел в рассуждениях. Японский математик был геометром и при переводе своих идей на менее знакомую территорию теории чисел не был абсолютно строг. Армия специалистов по теории чисел предприняла отчаянные усилия залатать прореху в доказательстве Мияоки, но тщетно. Через два месяца после того, как Мияока заявил о том, что располагает полным доказательством Великой теоремы Ферма, математическое сообщество пришло к единодушному заключению: доказательство Мияоки обречено на провал.

Как и в случае прежних несостоявшихся доказательств, Мияоке удалось получить немало интересных результатов. Отдельные фрагменты его доказательства заслуживали внимания как весьма остроумные приложения геометрии к теории чисел, и в последующие годы другие математики воспользовались ими для доказательства некоторых теорем, но доказать Великую теорему Ферма этим путем не удалось никому.

Шумиха по поводу Великой теоремы Ферма вскоре утихла, и газеты поместили краткие заметки, в которых говорилось, что трехсотлетняя головоломка по-прежнему остается нерешенной. На стене станции нью-йоркской подземки на Восьмой стрит появилась следующая надпись, несомненно, вдохновленная публикациями в прессе по поводу Великой теоремы Ферма: «Уравнение xn + yn = zn не имеет решений. Я нашел поистине удивительное доказательство этого факта, но не могу записать его здесь, так как пришел мой поезд».

Из книги Джон Леннон автора Голдман Альберт

Глава 63 Ферма старого Макленнона Примерно через полтора месяца после возвращения в Нью-Йорк в один из "ноябрьских вечеров в квартире Леннонов раздался телефонный звонок. Трубку сняла Йоко. Мужской голос с пуэрториканским акцентом спросил Йоко Оно. Прикинувшись

Из книги История Аквариума. Книга флейтиста автора Романов Андрей Игоревич

Из книги Великая Теорема Ферма автора Сингх Саймон

Проблема Ферма В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. «В школе я любил решать задачи, я брал их домой и из каждой задачи придумывал новые. Но лучшую из задач, которые мне когда-либо попадались, я обнаружил в местной

Из книги Никита Хрущев. Реформатор автора Хрущев Сергей Никитич

От теоремы Пифагора до Великой теоремы Ферма О теореме Пифагора и бесконечном числе пифагоровых троек шла речь в книге Э.Т. Белла «Великая проблема» - той самой библиотечной книге, которая привлекла внимание Эндрю Уайлса. И хотя пифагорейцы достигли почти полного

Из книги Испытание смертью или Железный филателист автора Арбатова Мария Ивановна

Математика после доказательства Великой теоремы Ферма Как ни странно, сам Уайлс испытывал по отношению к своему докладу смешанные чувства: «Случай для выступления был выбран весьма удачно, но сама лекция вызвала у меня смешанные чувства. Работа над доказательством

Из книги Одна жизнь - два мира автора Алексеева Нина Ивановна

Ферма или подворье? 13 февраля 1958 года все центральные московские, а затем и региональные газеты опубликовали решение ЦК компартии Украины «Об ошибке при закупке коров у колхозников в Запорожской области». Речь шла даже не обо всей области, а о двух ее районах: Приморском

Из книги Звезды и немного нервно автора Жолковский Александр Константинович

Глава десятая КРОКОДИЛЬЯ ФЕРМА Они ехали по живописной дороге в машине старого Джона, сидя на задних сиденьях. За рулем был черный водитель в яркой рубахе с причудливо подстриженной головой. На бритом черепе высились кусты жестких, как проволока, черных волос, логика

Из книги Своими глазами автора Адельгейм Павел

Толстовская ферма «Рид Фарм» Кирилл пошел в контору Толстовского фонда познакомиться с русскими. Когда вернулся, сказал, что Александра Львовна Толстая пришла в ужас и заявила:- Вы не можете оставаться в гостинице, это очень опасно для вас и для ваших детей.В тот же день

Из книги В мире животных [Выпуск 2] автора Дроздов Николай Николаевич

Теорема Понтрягина Одновременно с Консерваторией папа учился в МГУ, на мехмате. Он с успехом его окончил и даже некоторое время колебался в выборе профессии. Победило музыковедение, в результате выигравшее от его математического склада ума.Одним из папиных сокурсников

Из книги Тяжелая душа: Литературный дневник. Воспоминания Статьи. Стихотворения автора Злобин Владимир Ананьевич

Теорема Теорема о праве религиозного объединения выбирать священника нуждается в доказательстве. Читается она так: "Православная община создается… под духовным руководством избранного общиной и получившего благословение епархиального архиерея священника".

Из книги Память о мечте [Стихи и переводы] автора Пучкова Елена Олеговна

Козья ферма Летом в деревне немало работы. Когда мы посетили село Хомутец, там шла заготовка сена и душистые волны от свежескошенных трав, казалось, пропитали все вокруг.Травы надо скосить вовремя, чтобы они не перезрели, тогда в них сохранится все ценное, питательное. Эту

Из книги Червивое яблоко [Моя жизнь со Стивом Джобсом] автора Бреннан Крисанн

I. Ферма («Здесь, от куриного помета…») Здесь, от куриного помета Одно спасение - метла. Любовь - которая по счету? - Меня в курятник завела. Клюя зерно, кудахчут куры, Шагают важно петухи. И без размера и цензуры В уме слагаются стихи. О провансальском полдне

Из книги Мои путешествия. Следующие 10 лет автора Конюхов Фёдор Филиппович

Летняя ферма Соломинка, как молния ручная, в траву стекла; Другая, расписавшись на заборе, зажгла огонь зеленого стекла Воды в корыте лошадином. В сумрак синий Бредут, покачиваясь, девять уток по колее дух параллельных линий. Вот курица уставилась в ничто одним

Из книги автора

Разрушенная ферма Спокойное солнце цветком темно-красным Клонилось к земле, вырастая в закат, Но занавес ночи в могуществе праздном Задергивал мир, растревоживший взгляд. Безмолвье царило на ферме без крыши, Как будто ей волосы кто-то сорвал, Над кактусом бились

Из книги автора

Глава 9 Единая ферма Лора Шюлер и я решили отметить окончание старшей школы, отправившись в трехнедельное путешествие. Мы не особо понимали, что значит для нас выпуск из школы, однако знали, что отметить данное событие необходимо. Поэтому мы обсудили, что собираемся

Из книги автора

Подготовка к гонке. Аляска, ферма Линды Плетнер «Айдитарод» – ежегодные гонки на собачьих упряжках на Аляске. Протяженность маршрута – 1150 миль (1800 км). Это самая длинная в мире гонка на собачьих упряжках. Старт (торжественный) – 4 марта 2000 года из Анкоридже. Старт