Рассказываем как сделать солнечный коллектор для отопления своими руками. Солнечные коллекторы своими руками Солнечный коллектор для душа своими руками

22.10.2023 Станки

Итак, на повестке дня стоит вопрос: как собрать и изготовить солнечный коллектор своими руками. Раз вопрос стоит — надо его решить и желательно положительно. В данном руководстве описывается процесс создания солнечного коллектора своими руками, который способен обеспечить дачника полноценным горячим душем. Сердце коллектора — медный змеевик, в котором циркулирует вода. Нагреваясь, вода поступает в верхнюю часть бака, а холодная (остывшая) вода из нижней части бака возвращается в коллектор для дополнительного нагрева. Таким образом происходит естественная циркуляция без использования насоса. Для того, чтобы увеличить площадь нагревания коллектора, к змеевику прикрепляются специальные пластины, которые поглощают все тепло с поверхности коллектора и передают его теплообменнику. А герметизация и утепление короба не позволят ему растерять полученное тепло.

Этап первый: «Изготовление змеевика своими руками»

Для создания змеевика своими руками нам потребуется 16 метров мягкой медной трубы d10 мм. Она обычно продается в бухтах. Такую трубку удобно гнуть, поэтому используем именно ее. Схематично змеевик будет выглядеть вот так:

Для фиксации змеевик прикрепляется к основе из фанеры толщиной 5 мм размером 800 на 1800 мм. Поэтому первым делом выпиливаем соответствующий лист фанеры. Все секции змеевика должны устанавливаться под небольшим углом (около 5°). Если уложить трубу строго горизонтально, то система работать не будет. (без насоса) На фанеру мы должны прикрепить специальные шаблоны. С их помощью гораздо удобнее укладывать змеевик. Кроме того они будут поддерживать и фиксировать конструкцию. Шаблоны изготавливаем из той же фанеры толщиной 5 мм:

Нам нужно изготовить по 14 шаблонов №1 и №2. Шаблоны нужно прикрепить на основу согласно схемы:

Установку шаблонов начинаем с нижнего левого угла. Сначала с шагом в 100 мм устанавливаются шаблоны №2. (расстояние от края 50мм)

Затем между ними устанавливаются шаблоны № 1 под углом в 5 градусов относительно центра коллектора. Шаблоны прикрепляем гвоздями либо саморезами 7-9 мм. (не менее 2-х на каждый шаблон) Начинаем укладку медной трубы. Прикладываем трубу к фанере. Оставляем конец на 10 см выходящий за границы фанеры. Прижимаем трубку к шаблону и фиксируем скобой. Тянем трубку до следующего шаблона, расположенного на другом боку. Следим, чтобы трубка располагалась ровно под углом 5° без «задиров» и «провисов». Фиксируем в нескольких местах. Дойдя то поворота, укладываем трубку между шаблонами и фиксируем ее. Так постепенно поворот за поворотом. После того, как змеевик собран, проверьте прочность фиксации к основе, а самое главное угол наклона каждой секции. Помните, что на прямых участках не должно быть обвисания, иначе система работать не будет.

Этап второй. «Изготовление пластин своими руками»

Для изготовления пластин своими руками нам понадобится алюминиевый лист толщиной 0,4-0,5 мм Вырезаем его согласно чертежу:

Если у Вас имеются небольшие куски, то ничего страшного. Вместо одной пластины длиной 440 мм, можно изготовить две по 220 мм, или три по 146 мм. Пластина должна плотно прилегать к основе и «обнимать» трубку максимально плотно. После того, как вырезана форма, нужно придать области обозначенной пунктиром, форму трубки. Для этого изготавливаем деревянный шаблон вот по этой схеме:

После того, как форма создана, при помощи молотка вбиваем стальной брусок в углубление формы:

Необходимо изготовить 15 таких пластин. После того, как пластины изготовлены, надо прикрепить их на фанеру, поверх змеевика. Перед тем, как установить пластину на трубку, смазываем ее теплопроводной пастой для лучшего эффекта. Затем прижимаем к трубе и фиксируем мебельным степлером:

Для достижения еще большей производительности под трубкой можно уложить алюминиевый лист длиной 440 мм шириной 40-50 мм. Это нужно сделать до установки змеевика, на области между шаблонами:

После того, как все пластины уложены, красим их термостойкой черной матовой краской. Идеальным вариантом было бы пройтись перед покраской пескоструйным аппаратом, для того чтобы поверхность пластин стала шершавой и лучше принимала солнечный свет.

Этап третий: «Солнечный коллектор своими руками — сборка»

Чтобы собрать солнечный коллектор, нам понадобится рама. Изготавливается она по размерам основы для змеевика:

Для еѐ изготовления используем брус 20х70 мм. (два отрезка длиной 1840 мм и два длиной 800 мм). Скрепляем их. Теперь из влагостойкой фанеры вырезаем кусок 1840мм на 840 мм и прикрепляем его к раме. У нас получился короб. Далее устанавливаем дополнительную раму из бруса 20х20мм. Она нужна для того, чтобы закрепить на неѐ — основу с змеевиком. На схеме брус 20х70 обозначен оранжевым цветом, а 20х20 синим:

Теперь необходимо собрать воедино всё. Укладываем утеплитель на дно короба. Его размер 760 мм на 1760 мм. Толщина утеплителя должна равняться высоте бруса 20х20, т.е 20 мм. После утеплителя укладываем вспененный полиэтилен размером 800 на 1800 мм. А после него укладываем основу с змеевиком. В разрезе вся конструкция выглядит так:

При помощи саморезов 15 мм прикрепляем основу к коробу, а вернее к брусу 20х20. Теперь займемся утеплением боковых стенок. Для этого используем утеплитель толщиной 10 мм и высотой 40 мм. Его надо укрепить скобами по всему периметру. Следующий этап – остекление. Нам понадобится стекло 1840 на 840
мм. Перед его установкой проходим по периметру короба слоем силикона. Затем устанавливаем само стекло. Еще раз дополнительно проходим силиконом места соединения стекла и короба. Крепить стекло будем при помощи алюминиевого уголка любого из 4х размеров: 20х30 , 20х40, 30х30 или 30х40 Всего потребуется 5300 мм уголка.

Этап четвертый: «Солнечный коллектор своими руками — подключение »

Для максимального эффекта солнечный коллектор должен быть установлен под углом 90° к углу падения солнечных лучей. Угол наклона лучей солнца зависит от широты местности, где установлен коллектор. Кроме того, этот угол меняется в течении всего года. Наиболее оптимальный вариант изготовить специальную подставку, где можно регулировать угол наклона солнечного коллектора. Достаточно раз в месяц изменять этот угол для получения оптимального результата. Схему подобной опоры Вы можете видеть ниже:

Но очень часто возникает такая ситуация, что невозможно менять угол наклона каждый месяц. Это бывает если коллектор установлен на крыше. В этом случае необходимо определить оптимальный угол для всего сезона эксплуатации и при монтаже сразу установить коллектор на этот угол. При эксплуатации коллектора в летний период рекомендуется устанавливать его на 15-25° меньше широты местности. Например, Москва расположена на широте 55,75°. Это значит, что оптимальный угол наклона будет от 30° до 40°. Данный коллектор нужно подключить к ѐмкости объемом 30 литров. Емкость должна располагаться выше самой верхней точки коллектора. Но это расстояние не должно превышать 1 метра, но не менее 30-40 см Соединения между коллектором и бачком можно осуществить при помощи полипропиленовых труб d20 мм. Для этого к медной трубке надо припаять переходник, а уже к нему присоединить трубу. При этом старайтесь избегать отводов, а переходы осуществлять при помощи полуотводов (не более 2-х на прямой и обратный переход). Выход из верхней части коллектора должен соединяться с верхней частью бачка, а выход из нижней части бочка должен быть соединен с входом в нижней части коллектора.

Также к емкости нужно подвести холодную воду. Можно в бачке установить обычную сифонную систему унитаза, установив поплавок на 30 литров. Но при этом с каждой секундой приема душа, вода будет охлаждаться, поэтому самый простой и эффективный способ, это ручной краник. Таким образом, Вы расходуете все 30 литров горячей воды, а уже потом заполняете бак снова. Если хотите получить быстро небольшое количество горячей воды, то заполните бак не полностью. Обращаю Ваше внимание, что 30 литров это достаточное количество для ясной погоды в условиях Московской области. Если погода пасмурная, либо температура воздуха ниже 8 С, то не заполняйте бак полностью. Если облачность сильная и солнце не проглядывается залейте в бак только 20 литров воды. А если облачность сопровождается низкой температурой воздуха – то 15 литров. Эти правила работают в условиях Московской области и центральной части России. Для Ленинградской области максимальный объѐм бака — 25 литров, а для Кубани – 35 литров. Не забываем, что накопительный бачек также должен быть утеплен.

Использовать бесплатную солнечную энергию для отопления и горячего водоснабжения дома довольно заманчиво. Сделать это можно с помощью гелиоустановки, главным элементом которой является солнечный коллектор. Но одним из сдерживающих факторов использования гелиоустановок является их относительно большая стоимость. Но ведь их можно сделать самостоятельно. Поэтому, в этой статье мы расскажем о принципе их работы, видах, а также как собрать и изготовить солнечный коллектор своими руками для отопления дома и обеспечения его горячей водой из разных подручных материалов.

Принцип работы и виды солнечных коллекторов

Солнечные коллекторы представляют собой теплообменники, которые улавливают энергию Солнца и превращают ее, в зависимости от их вида, в тепловую энергию жидкости или воздуха, циркулирующих в них. Нагретые в коллекторе жидкость или воздух используются для горячего водоснабжения или отопления дома напрямую или через дополнительные теплообменники, например, через бойлеры косвенного нагрева. Главная задача любого такого коллектора: как можно больше «поймать» солнечной энергии и с наименьшими потерями передать его циркулирующему в нем теплоносителю.

Виды гелиоколлекторов

По виду циркулирующего и нагреваемого в них теплоносителя солнечные коллекторы могут быть:

  • Жидкостными;
  • Воздушными.

По конструктивным особенностям и виду теплообменной поверхности они могут быть:

  • В виде емкости;
  • Трубными;
  • Плоскими;
  • Вакуумными.

Жидкостные солнечные коллекторы, как следует из их названия, в рабочем состоянии заполнены жидкостью, которая циркулирует и нагревается в них. Это может быть обычная вода или незамерзающая жидкость (антифриз). В первом случае, нагретая вода может подаваться напрямую в систему горячего водоснабжения, в накопительную емкость или в бойлер косвенного нагрева, а во втором случае – только в бойлер. Такие коллекторы могут использоваться как для обеспечения дома горячей водой, так и для его отопления. Все зависит от мощности гелиоустановки.

Воздушные гелиоколлекторы используются, главным образом, для отопления дома. Холодный воздух из помещения подается в такой коллектор, нагревается там и подается назад в помещение с помощью естественной или принудительной циркуляции.

Большинство из этих видов солнечных коллекторов можно изготовить самостоятельно. Проявив фантазию, для их изготовления можно использовать разные подручные материалы: пластиковые или металлические емкости, трубы, шланги, б/у радиаторы и даже пивные банки. Ниже, мы рассмотрим несколько конструкций солнечных коллекторов, которые можно изготовить своими руками, используя эти и другие подручные материалы.

Солнечный коллектор из металлической или пластиковой емкости

Простейший солнечный коллектор можно изготовить своими руками из металлической или пластиковой емкости объемом 50-100 л. Это так называемый летний душ, который довольно распространен в сельской местности и на дачах.

Солнечный коллектор для нагрева воды из металлических бочек

Лучшим металлическим вариантом такого коллектора будет емкость из нержавеющей стали, покрашенная снаружи в черный цвет. Правда, стоимость такой новой емкости довольно высокая. Поэтому можно использовать б/у емкости. Например, сварить бак из двух нержавеющих емкостей от старых стиральных машин. Можно использовать и емкости из черного металла, оцинкованные или окрашенные водостойкой краской. Пластиковые емкости хороши тем, что имеют небольшой вес и не подвергаются коррозии, но они недолговечны, так как пластик плохо переносит ультрафиолетовое излучение.

Бочка устанавливается на южной стороне крыши дома или непосредственно над летним душем. Если бочка не герметична, то подвод холодной и забор нагретой осуществляется снизу. Давление теплой воды в точке забора будет определяться высотой установки и уровнем воды в бочке. Она наполняется холодной водой, которая в течении некоторого времени нагревается, а потом используется.

Если бочка герметична, то подача холодной воды осуществляется снизу, а забор теплой — вверху. Такая емкость подключается к системе холодного водоснабжения (насосной станции) и при заборе нагретой воды в бочку поступает из системы холодная, вытесняя теплую в верхнюю часть.

Преимущество такого солнечного коллектора в простоте. Его несложно сделать своими руками. Если бочка цилиндрической формы, то она хорошо освещается солнечными лучами на протяжении всего дня.

Недостатки данной конструкции:

  • Использовать можно только в теплое время года;
  • малоэффективна в ветреную погоду и когда солнце закрыто облаками;
  • Большая инерционность — относительно длительный нагрев воды;
  • Нагретая днем вода ночью остывает.

Как изготовить и собрать солнечный коллектор из металлических труб

Простой и эффективный солнечный коллектор можно изготовить своими руками из тонкостенных металлических трубок: стальных, медных или алюминиевых. Он представляет собой трубчатый теплообменник (радиатор), который помещается в теплоизолированную коробку из досок, фанеры или ДСП.

Лучшим материалом для изготовления радиатора гелиоколлектора безусловно является медь. Она обладает отличной теплопередачей и не подвержена коррозии. Но этот материал довольно дорогой. Алюминиевые трубки, хотя дешевле медных, но могут возникнуть трудности при их сварке.

Дешевле и проще всего изготовить теплообменник из стальных труб. Их можно сварить при помощи обычного сварочного аппарата. Для изготовления такого радиатора могут быть использованы стальные трубы диаметром ½ — 1″. При этом, для подвода холодной и отвода нагретой воды используются трубы большего диаметра и с большей толщиной стенок, а для самого теплообменника — меньшего диаметра и с меньшей толщиной стенок.

Схема радиатора солнечного коллектора из труб

Размеры радиатора солнечного коллектора, а следовательно длинна труб зависит от требуемой мощности. Но если сделать его слишком большим и громоздким, то могут возникнуть трудности с его сборкой и установкой. Поэтому, лучше всего, если его размеры будут в пределах: ширина — 0,8-1 м, а высота 1,5-1,6 м. Мощность такого коллектора будет в пределах 1,2-1,4 кВт. Если же вам необходимо увеличить мощность гелиоустановки, то можно изготовить несколько таких коллекторов и соединить их между собой.

В этом случае для изготовления радиатора солнечного коллектора нам понадобятся две толстостенные трубы диаметром ¾ — 1″ длиной 0,8-1м и 12-18 тонкостенных трубок диаметром ½ — ¾ » и длиной 1,5-1,6 м.

В толстостенных трубах, которые будут служить для подвода и отвода воды, сверлятся отверстия под тонкостенные трубы меньшего диаметра с шагом 3-4,5 см. Один конец такой трубы глушится, а к другому приваривается или нарезается в нем резьба.

Трубы свариваются в одну конструкцию радиатора и красятся черной матовой краской.

Теперь необходимо изготовить теплоизолированный короб для радиатора. Для этого можно использовать влагоустойчивую фанеру, плиты ДСП, OSB или обрезные доски. Но лучше всего подошла бы водостойкая фанера (ФСФ).

Размеры короба рассчитываются с учетом размеров радиатора, слоя утеплителя и зазоров между ними. Высота бортов короба должна учитывать толщину утеплителя, самих труб, а также расстояние их от днища и закрывающего короб стекла или поликарбоната (10-12 мм). В верхнем торце бортов делается выборка (паз) под стекло или поликарбонат. В одном из боковых бортов делаются отверстия для труб подвода и отвода воды. Элементы короба в одну конструкцию соединяются с помощью саморезов.

В качестве утеплителя можно взять пенополистирол, обычный (пенопласт) или экструдированный, а также минеральную вату плотностью не менее 25. Слой утеплителя (не менее 5 см) монтируется изнутри на днище и по бокам короба. Сверху на него укладывается лист оцинкованного металла или слой толстой фольги, которые также окрашиваются в черный матовый цвет.

Радиатор крепится в коробе с помощью хомутов или зажимов, наличие которых необходимо предусмотреть еще на этапе изготовления короба. Место расположения и размеры хомутов зависят от конструкции радиатора и размера труб.

Сверху короб накрывается стеклом или поликарбонатом. Накрытие укладывается в пазы (выборку) и надежно крепится. Все стыки герметизируются.

Солнечный коллектор готов. Его необходимо установить на южной стороне дома с наклоном к горизонту 35-45 ⁰. На его базе можно изготовить гелиоустановку, которая включает в себя теплоизолированный накопитель теплой воды емкостью 100-200 литров или бойлер косвенного нагрева.

Установка готового солнечного коллектора

Коллектор из пластиковых или металлопластиковых труб

Солнечный коллектор своими руками можно также изготовить используя пластиковые ПНД или ПП трубы. Теплопередача пластика хотя и меньше, чем у металлических на 13-15%, но зато он намного дешевле меди и не подвержен коррозии, как черная сталь.

Для изготовления простого солнечного коллектора своими руками трубы ПНД диаметром 13-20 мм можно уложить в коробе в виде спирали, закрепить с помощью хомутов и покрасить в черный цвет.

Вариант солнечного коллектора из пластиковых ПНД труб

Полипропиленовые трубы гнутся плохо, но их просто соединять с помощью пайки, используя специальные фитинги. Подводные трубы (горизонтальные коллекторы) можно изготовить из ПП труб диаметром 25 мм, а сам теплообменник из труб диаметром 20 мм. Готовый радиатор солнечного коллектора красим в черный цвет и монтируем в короб, который изготавливается также, как и в варианте с металлическими трубами.

Можно также изготовить радиатор для солнечного коллектора из металлопластиковых труб. При этом их можно соединить с помощью фитингов, по той же схеме, что и ПП-трубы или же уложить зигзагами («змейкой») или в виде спирали. Второй вариант проще. Но необходимо помнить, что радиус изгиба металлопластиковых труб не должен быть меньше 7 диаметров трубы.

Вариант солнечного коллектора из металлопластиковых труб

Солнечный коллектор из радиатора холодильника

Если у вас есть радиатор от старого холодильника, то его тоже можно использовать для изготовления своими руками солнечного коллектора. Для этого необходимо его тщательно промыть, чтобы очистить от остатков фреона. Во время промывки следует также проверить его герметичность – нет ли протечек. Если они есть, эти места необходимо загерметизировать холодной сваркой или запаять.

Радиатор от старого холодильника

Сам радиатор необходимо покрасить черной матовой краской.

Необходимо предусмотреть также способ соединения входной и выходной трубок с накопительным баком гелиоустановки или другими элементами, в зависимости от ее вида. Для этого, например, можно припаять на концах трубок резьбу требуемого размера или натянуть резиновые шланги, закрепив их хомутами.

Подготовленный таким образом радиатор солнечного коллектора крепится с помощью хомутов в теплоизолированном коробе, изготовленном с учетом его размеров. Сам короб может быть изготовлен также, как и предыдущих случаях.

Воздушные солнечные коллекторы для отопления дома

Кроме вышеописанных солнечных коллекторов в которых с помощью солнечной энергии нагревается жидкость можно изготовить своими руками конструкции в которых нагревается воздух. Такой солнечный коллектор можно использовать для дополнительного отопления дома. Холодный воздух из помещения подается в его теплообменник, нагревается там и подается обратно в помещение.

Теплообменник для такой гелиоустановки может быть изготовлен из листового металла, тонкостенных металлических труб, а также даже из банок от пива или других напитков. Сами конструкции таких коллекторов мы рассмотрим в другой статье этой рубрики.

Как я сделал солнечный коллектор своими руками: Видео

В этой публикации представлены результаты объемных исследований блогера Сергея Юрко. Показаны 3 солнечных коллектора, изготовленные мастером своими руками и наиболее эффективный из них – так называемый 3 пленочный коллектор, он нагревает воду до 60 градусов. Есть более простой 2 пленочный, и он способен доводить воду до 55 градусов. Самый простой и самый дешевый 1 пленочный, но он обеспечивает прогрев только до 35 или 40 градусов.

Стоимость одного квадратного метра этих примитивных коллекторов примерно в тысячу раз дешевле заводских аналогов, и поэтому возникает вопрос: а что же такого хорошего в фирменных коллекторах, что они стоят в тысячу раз дороже примитивных, которые может изготовить своими руками любой человек за несколько часов, потратив мизерные деньги.

Будем сравнивать простые коллекторы с дорогими заводскими моделями по эффективности, экономической целесообразности и другим характеристикам. И далеко не всегда это сопоставление в пользу заводских устройств. Ролик на тему: сделаем простейшие солнечные коллекторы и посмотрим, на что они способны. А также выясним, при каких случаях имеет смысл отказаться от дешёвого солнечного тепла с этих примитивных конструкций, чтобы заплатив сотни или тысячи раз дороже, получить такой же эффект от более дорогих устройств.

Личный интерес автора ролика к теме основан на предположении, что заводские солнечные коллекторы являются эволюционным тупиком солнечной тепловой энергетики, поскольку, например, солнечные батареи за последние несколько десятилетий подешевели больше чем в сто раз и график показывает процесс снижения цен.

Возникает мысль, что эволюция солнечных коллекторов пошла не по тому пути и поэтому имеет смысл вернуться к самым простым технологиям.

Черная пленка является единственной, из чего состоит 1-пленочный примитивный коллектор, то есть на пленку наливается вода и очевидно, что во время солнца это вода нагреется. Её можно купить на базаре в любом городе. Мастер приобрел три квадратных метра за 15 гривен. Стоимость коллектора выходит 15 евро цент за квадратный метр.

Но имеет смысл добавить еще одну – прозрачную пленку, которая покроет поверхность нагреваемой воды. Температура нагрева радикально увеличивается, поскольку вторая пленка останавливает испарение воды. Её продают на любом базаре для теплиц и из-за этого второго слоя стоимость коллектора увеличивается до 35 евро центов за квадратный метр.

Но есть еще и 3 пленочный вариант и дополнительная пленка тоже является прозрачной, она увеличит стоимость коллектора до 55 евро центов за квадратный метр.


Функция 3 пленки, как и у стекла заводского плоского коллектора, то есть между стеклом и черным абсорбером формируется слой воздуха толщиной несколько сантиметров, воздух является теплоизолятором.

Сколько пленок нужно для хорошего нагрева воды?

Экспериментальные измерения дали неожиданные результаты, поскольку оказалось что в нашем случае результат применения третьей пленки не является таким эффективным, как в случае заводского плоского коллектора – температура нагрева воды увеличивается, но всего лишь на несколько градусов. Причем наша тройка коллекторов может иметь разные конструкции. К примеру 2 пленочная – прозрачная полиэтиленовая пленка, продается на базарах в виде рукава. Вода заливается внутрь рукава, а роль нижней черной пленки выполняют черная поверхность крыши многоэтажки.


Аналогичное исследование, но с рукавом из не прозрачной, а черной пленки. Если вторая пленка черная, вариант предпочтительнее только при условии хорошей циркуляция воды через систему. Коллектор нагрел 100 литров воды до 66 градусов. Можно заметить несколько усложнений конструкции, в том числе лист пенополистирола толщинoй 3 сантиметра. но эксперименты показали, что теплоизоляция под коллектором увеличит температуру нагрева, но не радикально.

Эксперимент в августе с нагревом воды при температуре воздуха в тени 35 градусов показал, что пленочный коллектор на хорошей теплоизоляции нагрел воду до 63 градусов и в тот же самый момент другой коллектор нагрел воду до 57 градусов, хотя под ним теплоизоляции нет и его первая пленка лежит прямо на земле.

Дополнительные функции кустарного садового коллектора

Также интересно обратить внимание, что однопленочный коллектор во время дождя выполняет функцию сбора дождевой воды что для некоторых домов и местности может оказаться актуальным. кроме этого, 1 пленочные и 2 пленочные коллекторе ночью могут выполнять функцию градирни, то есть они отбирают тепло из воды, используемой для систем охлаждения. Можно использовать в режиме, когда днем через них циркулирует вода, которую нужно нагревать. а ночью коллектор охлаждает воду баков. днем вода из них используется для отбора тепла. в результате чего она нагревается. и поэтому следующей ночью ее нужно опять охлаждать коллекторами.

Интересно заметить, что высота воды в коллекторах может превышать несколько сантиметров. они являются одновременно и солнечным коллекторам и баком для горячей воды. То есть они работают как хорошо известная черная бочка на летнем душе.

Но очевидно, что после исчезновения солнца вода в коллекторе охлаждается. Для этого случая может оказаться интересным коллектор с тремя слоями пленки, вода в котором охлаждается медленно.

На фото. Стоимость заводских тепловых коллекторов в тысячу раз дороже представленных самодельных.

Статистика по измерениям эффективности самодельных и заводских солнечных нагревателей

1 августа проводил эксперимент по измерению производительности 2 пленочного коллектора. На протяжении солнечного дня измерял температуру воды и заносил в таблицу.


насколько эффективен нагреватель воды с пленкой

В следующий таблице интерпретация полученных результатов, в столбце количество теплоты, которую реально производил коллектор.


Описано в примечании фото, как рассчитывалось по результатам измерений температуры. В другом столбце количество солнечной радиации, которая попала на солнечный коллектор. причем важно заметить, что она зависит от угла солнца над горизонтом, точнее от синуса этого угла.

Интересно, что в данный временной промежуток производство тепла коллектором было больше, чем количество солнечной радиации. но никакого парадокса нет, если обратить внимание на разницу температур. В это время температура воздуха была больше, чем воды в коллекторе, и поэтому она нагревалась не только из-за поглощения солнечной радиации, но и вследствие нагрева от более теплого воздуха. но в другие временные промежутки вода была уже теплее воздуха. причем, чем больше разница температур, тем больше тепловые утечки из воды в окружающий воздух. тем меньше полезного тепла производят коллектор. Можно прийти к выводу, что как только температура воды достигнет примерно 60 градусов, она прекратит нагреваться, поскольку упомянутые тепловые утечки сравняются с поступлением энергии Солнца в коллектор.

В правом крайнем столбце таблицы зафиксирована измеренная мощность нагрева коллектора на единицу площади, ее можно сравнить с столбцом с мощностью нагрева одного квадратного метра заводского коллектора в тех же условиях. Описано, как вычислял мощности. Один квадратный метр заводской модели имеет преимущество над такой же площадью самодельного только при работе на высоких температурах воды. а если нужно греть воду с температурой выше 60-70 градусов, то кустарный коллектор не сможет работать вообще. в то же время 1 квадратный метр самодельного теплообменника произведет тепла заметно больше, чем один квадратный метр фабричного, когда температура воды меньше температуры окружающего воздуха.

Результаты объясняются энергетическими характеристиками 2 пленочного коллектора.


А это оценка характеристик других типа примитивных нагревателей.

Приблизительные характеристики заводских плоских коллекторов, представленных в паспорте.

В интернете можно найти такие характеристики практически для любой марки. По таблице видно, что фирменный обменник тепла имеет преимущество по этому коэффициенту, благодаря чему он способен работать на высоких температурах. но с другой стороны самопальный коллектор работает намного лучше заводского в случае, если нужно подогреть воду с температурой ниже воздуха. Например, если нужно нагревать 10 градусную воду подземной скважины во время 30-градусной жары. дело в том, что коэффициент корректнее называть не тепловыми потерями, а коэффициентом теплообмена. Поскольку если вода в коллекторе холоднее воздуха, то в коллекторе нет тепловых потерь, а наоборот, из более теплого воздуха в него поступает дополнительное тепло. Данный коэффициент интерпретируется так, что если разница температур между водой и воздухом увеличивается на 1 градус, то обмен тепла через каждый квадратный метр коллектора увеличивается на 20 ватт.

Эта характеристика (оптический КПД) показывает кпд преобразования солнечной радиации в полезное тепло в условиях, когда температура теплоносителя в коллекторе равна температуре окружающего среды. В примечании описано, почему у простейших коллекторов этот показатель немного лучше, чем у заводских. Но это указан кпд нового чистого коллектора, а примитивные очень чувствительны к грязи. Текст ниже описывает, как много грязи накапливается в них течение эксплуатации.

Грязь и пузырьки в простых самодельных коллекторах

* В воду 1-пленочного коллектора извне приходит очень много разнообразной грязи. В 2-х и 3-пленочных устройствах эта проблема выражается в пылевом налете на верхней пленке, и после высыхания воды дождя или росы эта грязь группируется в непрозрачные пятна, которые могут очень заметно уменьшить КПД коллектора. Но с другой стороны, есть несколько несложных способов удалять эту грязь после дождя.
* Из воды тоже выпадает много грязи в виде мелких хлопьев на поверхности воды или крупных хлопьев на дне. Эти выпадения усиливаются из-за нагрева воды.
* Также накапливается «белый налет» (на верху 1-й и низу 2-й пленки), который заметно снижает КПД. Он прикрепляется к пленкам очень прочно, т.е. потоком воды не удаляется (и щеткой он оттирается с большим трудом и не полностью). Возможно, это выпадение солей из нагретой воды, возможно, это последствия разложения полиэтиленовых пленок.
* Часть грязи в коллекторе может быть объяснена продуктами разложения полиэтилена вследствие УФ-радиации и высокой температуры. Обычно полиэтилен разлагается на перекись водорода, альдегиды и кетоны. В основном, это газы или жидкости, хорошо растворимые в воде. т.е. в осадок они вроде бы не должны выпадать.
* КПД коллектора также снижается из-за большого количества газовых пузырьков (диаметром до нескольких миллиметров на верху 1-й и низу 2-й пленки), которые выделяются при нагреве воды (При нагреве уменьшается растворимость газов в воде). Интересно, что при расположении коллектора на земле на его 1-й пленке пузырьков практически нет (но они есть на низу 2-й)
* Под 2-й пленкой могут образовываться большие пузыри, а также воздух в складках. Эти участки быстро запотевают, и это уменьшает КПД.
* На краях коллектора 2-я пленка может не прилегать к воде: на таких участках низ запотевает и поэтому плохо пропускает солнечную радиацию.
* В 3-пленочных коллекторах могут быть запотевания низа 3-й пленки. Это случается при неправильной установке 2-й пленки (из-за чего пар из коллектора может проникать под 3-ю пленку) или из-за её повреждений. В таких случаях нужно устанавливать 3-ю пленку так, чтобы ветер слегка вентилировал пространство между нею и 3 слоем.

Загрязнение воды коллекторов из-за разложения полиэтиленовых пленок

Это разложение будет из-за одновременного воздействия кислорода воздуха, ультрафиолетовой солнечной радиации и температуры 50-60 град. Полиэтилен разлагается на альдегиды, кетоны, перекись водорода и др.
При нагреве в коллекторе каждого 1 куб. м воды его полиэтиленовые пленки будут выделять порядка 1 г продуктов разложения (На 1 кв. м коллектора приходится около 100 г 1-й и 2-й пленок, и за время своей службы они выделят, по очень приблизительным оценкам, около 10 г «продуктов разложения» и нагреют порядка 10 куб. м воды). Но непонятно, сколько из этих 1 мг/ литр перейдет в воду, а сколько улетит в атмосферу, выпадет в осадок на дне коллектора и бака горячей воды, перейдет в тот «белый налет» (о котором я говорил в предыдущем тексте), не выйдет за пределы массы полиэтилена
Кроме того, непонятно благоприятное влияние на очистку воды вследствие ее пребывания и нагрева в коллекторе (а там из нее выпадает очень много осадка), а также вследствие пребывания в баке горячей воды. Таким образом, по приблизительным оценкам, в воду поступит 0,1-0.5 мг / литр продуктов разложения полиэтилена, которые распределятся между десятками хим. веществ с концентрациями по 0.001-0,1 мг на литр нагреваемой воды. Поскольку это недалеко от ПДК вредных веществ, консультация с СЭС лишней не будет. Например, согласно стандарту ГН 2.1.5.689-98 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»:
– Есть ограничения по 13 шт. альдегидов – ПДК от 0,003 мг / литр до 1 мг / литр, например, ПДК формальдегида – 0.05 мг / литр, а самые жесткие требования к бензальдегиду – 0.003 мг / литр
– ПДК перекиси водорода – 0,1 мг / литр
– По 3 шт. экзотических кетонов тоже есть ограничения с ПДК 0,1-1,0 мг / литр

Выводы:

1) Если вода «застоялась» коллекторах, то концентрация «продуктов разложения» в ней будет в разы или десятки раз больше. Возможно, такую воду лучше выбрасывать.
2) Желательно использовать более тонкие пленки (они будут давать меньше «продуктов разложения»).
3) Пленки желательно как можно стабилизированные. Например, тепличная предпочтительнее обычной (не подкрашенной) полиэтиленовой, она стабилизируется против воздействия УФ-радиации. Другой пример: полиэтилен высокой плотности медленнее разлагается из-за высокой температуры, чем низкой плотности.
4) Отношение площади коллекторов к потребности объекта (в горячей воде) желательно как можно меньше. Т.е., например, при суточной потребности 10 куб. м горячей воды, станция с 50 кв.м. коллекторов дает загрязнение (концентрация вредных веществ) воды в десятки раз меньше, чем станция с 500 кв.м. коллекторов, в том числе и из-за более низкой температуры нагрева воды коллекторами, что уменьшает скорость разложения полиэтилена.
5) Если 2-я пленка коллекторов будет черная (а не прозрачная), то загрязнение воды должно быть в разы меньше (поскольку УФ-излучение проникает только в верхний слой 2-й пленки).
6) Можно подумать над таким вариантом работы солнечной станции, когда коллекторы нагревают
техническую воду, которая затем передает свое тепло через теплообменник чистой воде ГВС.

Какую лучше применять пленку для сбора солнечного тепла – черную или прозрачную?

Оптический кпд заметно уменьшается из-за воздушных пузырьков и запотевания второго слоя пленки коллектора. это к тому, что кпд реально эксплуатируемого устройства по всему сроку эксплуатации окажется на несколько десятков процентов меньше. Поэтому не имеет смысла стремиться к дорогим пленкам с большой долговечностью, поскольку за несколько месяцев эксплуатации на них накопится столько грязи, что пленки захочется заменить. Из-за таких проблем с разнообразной грязью склоняемся к тому, что 2 пленка должна быть все таки непрозрачной, а черной.

У этого коллектора черная пленка и нет радикального уменьшения кпд из-за грязи. Но у него есть проблема – солнце нагревает только тонкий верхний слой воды. Тем не менее существует несколько вариантов решения проблемы, которые будут получены после исследований.

Важно иметь ввиду что ветер увеличивает коэффициент теплопотерь примитивных коллекторов, а в случае однопленочного это влияние ветра может быть радикальным, так как увеличиваются потери тепла из коллектора вследствие испарения воды и может дойти до того, что даже в идеально солнечный день, но при сильном ветре и низкой влажности 1-пленочный сможет нагреть воду только на несколько градусов выше температуры окружающего воздуха. Кроме этого коэффициент к1 нужно увеличить на несколько десятков процентов, если под коллектором нет теплоизоляции и он лежит непосредственно на земле, на поверхности крыши и тому подобное.

Во 2 серии этого фильма сравниваются примитивные и заводские коллекторы по темам работы зимой, простоте подключения, экономической целесообразности, областям применения на практике.

Вторая часть (о работе зимой)


3, 4 серии (техобслуживание)


– Эксперимент с заливкой воды в рукав полиэтиленовой пленки:

Солнечный коллектор используется для поглощения энергии солнечного излучения, чтобы в дальнейшем она была концентрирована, преобразована и использована человеком.

Выработанная энергия применяется для:

  1. Обеспечения нагрева воды и запуска систем отопления жилых помещений.
  2. Обеспечения в бассейнах различного типа постоянно теплой водой.
  3. Обогрева теплиц.
  4. Для нагревания технологической воды, используемой в промышленности.

Принцип работы и область применения

Принцип действия

Конструкция и используемые для ее создания материалы направлены для максимально возможного потребления солнечной энергии. После чего она преобразовывается в тепловую, и передается для дальнейшего ее использования. в данной системе может являться как воздух, так и специальная жидкость с незамерзающими свойствами.

Циркуляция его может быть естественной и принудительной.

Коллекторы используются в различных странах с любым климатом.

Область применения их достаточно велика:

  1. Для дач, коттеджей и частных домов.
  2. Различных производственных комплексов, независимо от рода деятельности и масштаба.
  3. На автомойках, станций автозаправок.
  4. В детских и медицинских учреждениях.
  5. На объектах железнодорожного транспорта.
  6. В гостиничных, торговых и развлекательных комплексах.
  7. В заведениях общепита и офисах.

Преимущества и недостатки

Коллекторы имеют большой ряд преимуществ, к ним можно отнести:

  1. Снижение расходов на обслуживание отопительной системы дома , и обеспечение его горячим водоснабжением.
  2. Возможность получения обогрева дома и горячей воды при перебоях и временном отсутствии электроснабжения и подачи газа.
  3. Снижение нагрузки на отопительную систему , вследствие чего происходит увеличение ее срока службы.
  4. Экономия природных ресурсов и сохранение экологии.
  5. Экологичность системы не оказывает негативного воздействия на человека.

Минусом можно назвать довольно высокую стоимость и непростой монтаж этого оборудования.

Виды

Можно выделить два вида этих устройств. Каждому из них свойственны определенные характеристики и принципы действия.

Плоский коллектор


Подобные коллекторы изготовляются в виде панели, размером до 2,5 метра, в центре которой помещается поглощающая пластина. Изготавливается она из теплопроводящих металлов, медь или алюминий самые используемые для этого. На нее нанесено покрытие, которому свойственно наличие низкого коэффициента излучения.

Это требуется для наибольшего преобразования солнечных лучей в виде тепловой энергии, при этом, в окружающую среду ее выход должен быть минимальным. Этот абсорбирующий слой соединяется с трубками. Именно по ним происходит циркуляция чаще всего пропилен-гликоля, который выступает в качестве теплоносителя.

Также, или же вода. Под трубками расположен теплоизоляционный слой. Над поглотителем находится специальное защитное гелиостекло. Ему характерно минимальное содержание железа для наибольшей пропускной способности, а корпус усилен листовой сталью с теплоизоляцией или алюминием.

Используется этот вид для монтажа на скатных или же плоских крышах. Но его можно монтировать в любом месте и положении. Этот вид наиболее распространен и получил широкое использование для отопительных систем и для нагрева воды.

Трубчатый (вакуумированный)

Состоит он из отдельных трубок. Число их может быть от 5 до 30 штук. Каждая, из трубок по принципу действия представляет собой миниколлектор. Все они объединены в одну панель.

Внутри трубки находится еще одна такая же деталь меньшего размера. Между ними создан вакуум. Верхняя часть состоит из гелиостекла и выполняет функцию защиты. В нее встроена пластинка поглотителя, состоящая из меди или алюминия. Меньшая трубка находится под пластиной, в ней происходит циркуляция теплоносителя. Вакуум в этом случае играет роль теплоизолятора.

Такой солнечный коллектор действует значительно эффективней по сравнению с плоским, в условиях низких атмосферных температур. Но стоимость их значительно выше.

Трубчатый коллектор в свою очередь бывает двух видов, отличных по конструкции. Различают тип с тепловой трубой и прямоточный. Преимуществом первого типа можно назвать сохранение эффективной работоспособности при температуре до -30 градусов Цельсия, а в некоторых случаях даже до -40.

Отличительными особенностями прямоточного коллектора является возможность его монтажа в любом положении, а также минимальные теплопотери при работе.

Как сделать своими руками?


Устройство коллектора

Этот прибор для экономии энергии можно изготовить собственными руками. Вариантов исполнения в этом случае существует немало. Например, его можно сделать из оконной рамы, старого электрического бойлера, холодильника, и даже пластиковых бутылок.

Рассмотрим один из наиболее простых коллекторов, изготовленных при помощи деталей старого холодильника. Осуществлять такой коллектор будет подогрев воды для технических нужд.

Необходимые материалы и инструменты

Материалы:

  1. Конденсатор, снятый со старого холодильника.
  2. Брусья из дерева, 5/5 см.
  3. Резиновый коврик.
  4. Стекло (подойдет от оконной рамы).
  5. Лист фольги.
  6. Шурупы, гвозди.
  7. Скотч.

Инструменты:

  1. Молоток.
  2. Шуруповерт.

Перед проведением работ, змеевик от холодильника необходимо промыть с использованием моющего средства и проточной воды. Это надо для его очищения от фреонового масла.


Для увеличения эффективности самодельного коллектора, можно использовать автомобильный радиатор, заменив им конденсатор.

Испытания показали, что этот агрегат способен за два часа работы нагреть около 20 литров воды на 20 градусов. Температура окружающей среды при эксперименте составляла +25 градусов Цельсия.

Конечно, такое устройство имеет низкое КПД и вероятность выхода из строя из-за завоздушивания теплообменника, но тем не менее, оно приносит определенную пользу.

Поскольку, солнечные коллекторы имеют эффективность, которая зависит от отражающей способности и поглощающей особенности материала, для увеличения этих особенностей были придуманы специальные покрытия.

Каждое из них подходит к определенному материалу, на который они будут наноситься. Есть покрытия для меди, алюминия и др. Нанесение их осуществляется довольно сложным способом, поэтому они не имеют широкого доступа.


  1. При выборе коллектора надо учитывать , что вакуумные его модели более хрупкие по сравнению с плоскими, но при повреждениях значительно проще починить первый вариант. Для этого потребуется всего лишь заменить вышедшие из строя трубки, когда как в плоском придется заменить всю абсорбирующую систему;
  2. Мощности , вырабатываемой с помощью одного коллектора, хватит для отопления нескольких жилых комнат и подогрева воды.
  3. Срок службы коллектора составляет до 30 лет. Но при покупке этого аппарата нужно учитывать, что вакуумный тип менее долговечен, по сравнению с другими.
  4. Установить это оборудование можно самостоятельно , используя инструкцию, которая прилагается к устройству. Процесс этот довольно трудоемкий и нелегкий, но позволяет сэкономить на затратах, необходимых для привлечения специалистов.

Всевозможные солнечные коллекторы разрабатываются с применением новейших технологий и современных материалов. Благодаря таким устройствам происходит преобразование солнечной энергии . Полученная энергия может нагревать воду, отапливать помещения, теплицы и оранжереи.

Аппараты можно укреплять на стенах, крышах частного дома, теплицы . Для больших помещений рекомендовано приобретать фабричные устройства. Сейчас гелиосистемы постоянно совершенствуются. Поэтому солнечные батареи сильно подают в цене, привлекая внимание потребителей. Стоимость фабричных устройств почти равноценна финансовым затратам, потраченным на их изготовление. Повышение цены происходит только из-за финансовой накрутки перекупщиков. Стоимость коллектора соизмерима с денежными затратами, которые потребуются на установку классической системы отопления.

Аппараты можно соорудить своими руками.

На сегодняшний момент изготовление таких устройств набирает все большую популярность. Стоит заметить, что эффективность самодельного аппарата по своему качеству сильно уступает фабричным устройствам . Но обогреть небольшое помещение, частный дом или хозяйственные постройки агрегат, выполненный своими руками, может легко и быстро.

Вводное видео об устройстве водонагревателя

Принцип работы

На сегодняшний момент разработаны различные виды гелиоколлекторов.

Но принцип водонагрева идентичен – все устройства работают по одной разработанной схеме . В хорошую погоду лучи солнца начинают нагревать теплоноситель. Он проходит по тонким изящным трубочкам, попадая в бак с жидкостью. Теплоноситель и трубочки размещаются по всей внутренней поверхности бака. Благодаря такому принципу происходит нагревание жидкости, находящейся в аппарате. Позже нагретую воду разрешено применять на бытовые нужды. Таким образом, можно отапливать помещение, использовать нагретую жидкость для душевых кабин как горячее водоснабжение.

Температуру воды можно контролировать разработанными датчиками. Если произошло слишком сильное охлаждение жидкости, ниже заданного уровня, то автоматически включится специальный резервный подогрев. Солнечный коллектор можно подключить к электрическому или газовому котлу.

Представлена схема работы, подходящая для всех солнечных водонагревателей. Такое устройство отлично подойдет для отопления небольшого частного дома. На сегодняшний момент разработано несколько устройств: плоские, вакуумные и воздушные приспособления. Принцип действия таких устройств очень схож. Происходит нагрев теплоносителя от солнечных лучей с дальнейшей отдачей энергии. Но в работе наблюдается очень много различий.

Видео о различных видах альтернативных источниках отопления

Плоский коллектор

Нагревание теплоносителя в таком устройстве происходит благодаря пластинчатому абсорберу. Он представляет собой плоскую пластину теплоемкого металла. Верхняя поверхность пластины в темный оттенок специально разработанной краской. К нижней части устройства приварена змеевидная трубка.