Общая формула оснований m oh x. Основания: классификация и химические свойства

ОПРЕДЕЛЕНИЕ

Основаниями называются электролиты, при диссоциации которых из отрицательных ионов образуются только ионы OH — :

Fe(OH) 2 ↔ Fe 2+ + 2OH — ;

NH 3 + H 2 O ↔ NH 4 OH ↔ NH 4 + + OH — .

Все неорганические основания классифицируют на растворимые в воде (щелочи) – NaOH, KOH и нерастворимые в воде (Ba(OH) 2 , Ca(OH) 2). В зависимости от проявляемых химических свойств среди оснований выделяют амфотерные гидроксиды.

Химические свойства оснований

При действии индикаторов на растворы неорганических оснований происходит изменение их окраски, так, при попадании в раствор основания лакмус приобретает синюю окраску, метилоранж – жёлтую, а фенолфталеин – малиновую.

Неорганические основания способны реагировать с кислотами с образованием соли и воды, причем, нерастворимые в воде основания взаимодействуют только с растворимыми в воде кислотами:

Cu(OH) 2 ↓ + H 2 SO 4 = CuSO 4 +2H 2 O;

NaOH + HCl = NaCl + H 2 O.

Нерастворимые в воде основания термически неустойчивы, т.е. при нагревании они подвергаются разложению с образованием оксидов:

2Fe(OH) 3 = Fe 2 O 3 + 3 H 2 O;

Mg(OH) 2 = MgO + H 2 O.

Щелочи (растворимые в воде основания) взаимодействуют с кислотными оксидами с образованием солей:

NaOH + CO 2 = NaHCO 3 .

Щелочей также способны вступать в реакции взаимодействия (ОВР) с некоторыми неметаллами:

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2 .

Некоторые основания вступают в реакции обмена с солями:

Ba(OH) 2 + Na 2 SO 4 = 2NaOH + BaSO 4 ↓.

Амфотерные гидроксиды (основания) проявляют также свойства слабых кислот и реагируют с щелочами:

Al(OH) 3 + NaOH = Na.

К амфотерным основаниям относятся гидроксиды алюминия, цинка. хрома (III) и др.

Физические свойства оснований

Большинство оснований – твердые вещества, которые характеризуются различной растворимостью в воде. Щелочи – растворимые в воде основания – чаще всего твердые вещества белого цвета. Нерастворимые в воде основания могут иметь различную окраску, например, гидроксид железа (III)- твердое вещество бурого цвета, гидроксид алюминия – твердое вещество белого цвета, а гидроксид меди (II) – твердое вещество голубого цвета.

Получение оснований

Основания получают разными способами, например, по реакции:

— обмена

CuSO 4 + 2KOH → Cu(OH) 2 ↓ + K 2 SO 4 ;

K 2 CO 3 + Ba(OH) 2 → 2KOH + BaCO 3 ↓;

— взаимодействия активных металлов или их оксидов с водой

2Li + 2H 2 O→ 2LiOH +H 2 ;

BaO + H 2 O→ Ba(OH) 2 ↓;

— электролиза водных растворов солей

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

Примеры решения задач

ПРИМЕР 1

Задание Вычислите практическую массу оксида алюминия (выход целевого продукта составляет 92%) по реакции разложения гидроксида алюминия массой 23,4 г.
Решение Запишем уравнение реакции:

2Al(OH) 3 = Al 2 O 3 + 3H 2 O.

Молярная масса гидроксида алюминия, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества гидроксида алюминия:

v(Al(OH) 3) = m(Al(OH) 3)/M(Al(OH) 3);

v(Al(OH) 3) = 23,4/78 = 0,3 моль.

Согласно уравнению реакции v(Al(OH) 3): v(Al 2 O 3) = 2:1, следовательно, количество вещества оксида алюминия составит:

v(Al 2 O 3) = 0,5 × v(Al(OH) 3);

v(Al 2 O 3) = 0,5 ×0,3 = 0,15 моль.

Молярная масса оксида алюминия, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 102 г/моль. Найдем теоретическую массу оксида алюминия:

m(Al 2 O 3) th = 0,15×102 = 15,3 г.

Тогда, практическая масса оксида алюминия составляет:

m(Al 2 O 3) pr = m(Al 2 O 3) th × 92/100;

m(Al 2 O 3) pr = 15,3×0,92 = 14 г.

Ответ Масса оксида алюминия — 14 г.

ПРИМЕР 2

Задание Осуществите ряд превращений:

Fe→ FeCl 2 → Fe(OH) 2 →Fe(OH) 3 →Fe(NO 3) 3

    Основание однородное - – естественное основание, сложенное горной породой одного вида. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Рубрика термина: Горные породы Рубрики энциклопедии: Абразивное оборудование, Абразивы,… …

    Основание - – поверхность, на которую наклеивают стеновое покрытие, например стена или потолок. [ГОСТ Р 52805 2007] Рубрика термина: Обои Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    Наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… … Энциклопедия Кольера

    Харько, Харьков (Харитон) мифический персонаж казак Харько, Харьков Имя при рождении: вероятно, Харитон … Википедия

    Неорганическая химия раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических… … Википедия

    Изучение химии в России формально ведет свое начало с учреждения в 1725 г. в СПб. Академии наук. В 1727 г. в качестве натуралиста и химика был приглашен сын тюбингенского аптекаря Иоганн Георг Гмелин, проведший почти все время своего пребывания в … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    В Викисловаре есть статья «органическая химия» Органическая химия раздел химии, изучающий со … Википедия

Один из классов сложных неорганических веществ - основания. Это соединения, включающие атомы металла и гидроксильную группу, которая может отщепляться при взаимодействии с другими веществами.

Строение

Основания могут содержать одну или несколько гидроксо-групп. Общая формула оснований - Ме(ОН) х. Атом металла всегда один, а количество гидроксильных групп зависит от валентности металла. При этом валентность группы ОН всегда I. Например, в соединении NaOH валентность натрия равна I, следовательно, присутствует одна гидроксильная группа. В основании Mg(OH) 2 валентность магния - II, Al(OH) 3 валентность алюминия - III.

Количество гидроксильных групп может меняться в соединениях с металлами с переменной валентностью. Например, Fe(OH) 2 и Fe(OH) 3 . В таких случаях валентность указывается в скобках после названия - гидроксид железа (II), гидроксид железа (III).

Физические свойства

Характеристика и активность основания зависит от металла. Большинство оснований - твёрдые вещества белого цвета без запаха. Однако некоторые металлы придают веществу характерную окраску. Например, CuOH имеет жёлтый цвет, Ni(OH) 2 - светло-зелёный, Fe(OH) 3 - красно-коричневый.

Рис. 1. Щёлочи в твёрдом состоянии.

Виды

Основания классифицируются по двум признакам:

  • по количеству групп ОН - однокислотные и многокислотные;
  • по растворимости в воде - щёлочи (растворимые) и нерастворимые.

Щёлочи образуются щелочными металлами - литием (Li), натрием (Na), калием (K), рубидием (Rb) и цезием (Cs). Кроме того, к активным металлам, образующим щёлочи, относят щелочноземельные металлы - кальций (Ca), стронций (Sr) и барий (Ba).

Эти элементы образуют следующие основания:

  • LiOH;
  • NaOH;
  • RbOH;
  • CsOH;
  • Ca(OH) 2 ;
  • Sr(OH) 2 ;
  • Ba(OH) 2 .

Все остальные основания, например, Mg(OH) 2 , Cu(OH) 2 , Al(OH) 3 , относятся к нерастворимым.

По-другому щёлочи называются сильными основаниями, а нерастворимые - слабыми основаниями. При электролитической диссоциации щёлочи быстро отдают гидроксильную группу и быстрее вступают в реакцию с другими веществами. Нерастворимые или слабые основания менее активные, т.к. не отдают гидроксильную группу.

Рис. 2. Классификация оснований.

Особое место в систематизации неорганических веществ занимают амфотерные гидроксиды. Они взаимодействуют и с кислотами, и с основаниями, т.е. в зависимости от условий ведут себя как щёлочь или как кислота. К ним относятся Zn(OH) 2 , Al(OH) 3 , Pb(OH) 2 , Cr(OH) 3 , Be(OH) 2 и другие основания.

Получение

Основания получают различными способами. Самый простой - взаимодействие металла с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 .

Щёлочи получают в результате взаимодействия оксида с водой:

Na 2 O + H 2 O → 2NaOH.

Нерастворимые основания получаются в результате взаимодействия щелочей с солями:

CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 .

Химические свойства

Основные химические свойства оснований описаны в таблице.

Реакции

Что образуется

Примеры

С кислотами

Соль и вода. Нерастворимые основания взаимодействуют только с растворимыми кислотами

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 +2H 2 O

Разложение при высокой температуре

Оксид металла и вода

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

С кислотными оксидами (реагируют щёлочи)

NaOH + CO 2 → NaHCO 3

С неметаллами (вступают щёлочи)

Соль и водород

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2

Обмена с солями

Гидроксид и соль

Ba(OH) 2 + Na 2 SO 4 → 2NaOH + BaSO 4 ↓

Щелочей с некоторыми металлами

Сложная соль и водород

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

С помощью индикатора проводится тест на определение класса основания. При взаимодействии с основанием лакмус становится синим, фенолфталеин - малиновым, метилоранж - жёлтым.

Рис. 3. Реакция индикаторов на основания.

Что мы узнали?

Из урока 8 класса химии узнали об особенностях, классификации и взаимодействии оснований с другими веществами. Основания - сложные вещества, состоящие из металла и гидроксильной группы ОН. Они делятся на растворимые или щёлочи и нерастворимые. Щёлочи - более агрессивные основания, быстро реагирующие с другими веществами. Основания получают при взаимодействии металла или оксида металла с водой, а также в результате реакции соли и щёлочи. Основания реагируют с кислотами, оксидами, солями, металлами и неметаллами, а также разлагаются при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 258.

Неорганические соединения, содержащие гидроксильные группы или гидроксид-анионы, связанные с атомом металла или неметалла, называются гидроксидами . В зависимости от свойств гидроксиды делят на кислотные (кислородсодержащие кислоты), основные (основания) и амфотерные, проявляющие свойства кислоты или основания в зависимости от партнера по реакции:

Таким образом, основания - это основные гидроксиды, образующие соли при взаимодействии с кислотами , например:

NaOH + HCl = NaCl + H 2 O

Амфотерные гидроксиды образуют соли при взаимодействии как с кислотами, так и с основаниями :

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O;

Al(OH) 3 + 3KOH = K 3

Амфотерные гидроксиды образуют элементы, образующие амфотерные оксиды: цинк, алюминий, хром(III) и др.

В зависимости от числа гидроксильных групп, способных нейтрализовать кислоты, основания делят на однокислотные - NaOH, двухкислотные - Ba(OH) 2 и трехкислотные, например, Cr(OH) 3 . Кроме этого выделяют в отдельные группы основания, нерастворимые в воде и щелочи - сильные основания, растворимые в воде. К щелочам относят гидроксиды щелочных и щелочноземельных металлов.

Гидроксиды называют следующим образом: гидроксид элемента(степень окисления). Для элементов, проявляющих постоянную валентность, степень окисления обычно не указывают. Примеры: NaOH - гидроксид натрия, Ba(OH) 2 - гидроксид бария, Cr(OH) 3 - гидроксид хрома(III).

Общие методы получения оснований

1. Взаимодействие щелочного или щелочноземельного металла с водой, например:

2Na + 2H 2 O = 2NaOH + H 2 

2. Взаимодействие оксидов щелочных и щелочноземельных металлов с водой:

CaO + H 2 O = Ca(OH) 2

3. Электролиз водных растворов солей щелочных или щелочноземельных металлов:

эл.ток

2NaCl + 2H 2 O = 2NaOH + H 2  + Cl 2 

катод анод

4. Нерастворимые в воде основания получают взаимодействием растворимых солей металлов с растворами щелочей:

CuCl 2 + 2NaOH = Cu(OH) 2  + 2NaCl

5. Необратимый гидролиз солей также может быть использован как метод получения малорастворимых оснований, например:

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3  + 6NaCl + 3CO 2 

Общие химические свойства оснований . Малорастворимые в воде слабые основания термически неустойчивы и при нагревании легко отщепляют воду, образуя оксид металла:

Cu(OH) 2 CuO + H 2 O

Основания, содержащие металл в промежуточной степени окисления, могут окисляться кис­лородом или другими окислителями, например:

4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Некоторые неметаллы (хлор, сера, фосфор) в водных растворах щелочей подвергаются диспропорционированию:

Cl 2 + 2KOH = KClO + KCl + H 2 O;

3S + 6KOH 2K 2 S + K 2 SO 3 + 3H 2 O

Металлы, образующие амфотерные оксиды и гидроксиды, а также кремний, растворяются в водных растворах щелочей с выделением водорода:

2Al + 6KOH + 6H 2 O = 2K 3 + 3H 2 ;

Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 

Основания, как основные гидроксиды, реагируют с кислотами и с кислотными оксидами с образованием солей:

Сa(OH) 2 + 2HCl = CaCl 2 + 2H 2 O;

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

Основания, растворимые в воде (щелочи), реагируют с солями с образованием малорастворимых гидроксидов, например:

FeCl 2 + 2NaOH = Fe(OH) 2  + 2NaCl

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.